Statistical methods for single-cell RNA sequencing data

Department of Biostatistics and Medical Informatics
University of Wisconsin-Madison

http://www.biostat.wisc.edu/~kendzior/

Single-cell vs. bulk RNA-seq

Heterogeneous

Homogeneous
Sub-population

Features of single-cell RNA-seq data

- Abundance of zeros, increased variability, complex distributions

Bacher and Kendziorski, Genome Biology, 2016.

Challenges in scRNA-seq

- Normalization
- Technical vs. biological zeros
- Clustering; Identifying sub-populations
- De-noising
- Adjusting for technical variability
- Adjusting for biological variability (oscillatory genes)
- Identifying and characterizing differences in gene-specific expression distributions (aka. identifying differential distributions)
- Pseudotime reordering
- Network reconstruction

Challenges in scRNA-seq

- Normalization
- Technical vs. biological zeros
- Clustering; Identifying sub-populations
- De-noising
- Adjusting for technical variability
- Adjusting for biological variability (oscillatory genes)
- Identifying and characterizing differences in gene-specific expression distributions (aka. identifying differential distributions)
- Pseudotime reordering
- Network reconstruction

Challenges in scRNA-seq

- Normalization

- Bacher, Chu et al., Nature Methods, 2017

- Technical vs. biological zeros
- Clustering; Identifying sub-populations
- De-noising
- Adjusting for technical variability Leng, Chu et al.,
- Adjusting for biological variability (oscillatory genes)
- Identifying and characterizing differences in gene-specific expression distributions (aka. identifying differential distributions)
- Pseudotime reordering

Korthauer et al., Genome Biology, 2016

- Network reconstruction

SCnorm: A quantile-regression based approach for robust normalization of single-cell RNA-seq data

Bacher, Chu et al., Nature Methods, 2017

Background

- Goal: correct for technical artifacts and/or gene-specific features
- Sequencing depth
- Length, GC content
- Amplification and other technical biases
- Without UMIs/spike-ins, most single-cell methods calculate global scale factors as in bulk RNA-seq
- One scale factor is calculated per sample and applied to all genes in that sample.

Bulk: Global scale-factor normalization for sequencing depth

Expression vs. depth varies with expression in scRNA-seq

Bulk

Single cell

We see the count-depth relationship varying with expression in many datasets

Overview of SCnorm

- Identify gene groups based on the count-depth relationship. Within each group,
- Quantile polynomial regression is used to quantify the groupspecific relationship between expression and sequencing depth. The quantile is chosen iteratively.
- Predicted values are used to calculate group-specific scale factors for each cell.

SCnorm

- Filter: genes having greater than 10% expression values nonzero and median nonzero expression greater than 2.
- Let $Y_{g}=\left(y_{g 1}, \ldots, y_{g J}\right)$ denote \log non-zero expression for gene g in cell $j ; X_{j}$ denote log sequencing depth.
- The gene-specific count-depth relationship is estimated by:

$$
Q^{0.5}\left(Y_{g, j} \mid X_{j}\right)=\beta_{g, 0}+\beta_{g, 1} X_{j}
$$

- Genes are split into K groups. The group specific count-depth relationship is estimated by:

$$
Q^{\tau_{k}, d_{k}}\left(Y_{j} \mid X_{j}\right)=\beta_{0}^{\tau_{k}}+\beta_{1}^{\tau_{k}} X_{j}+\cdots+\beta_{d}^{\tau_{k}} X_{j}^{d_{k}}
$$

- Estimates of τ_{k} and d_{k} minimize $\left|\hat{\eta}_{1}^{\tau_{k}}-{ }_{g}^{\text {mode }} \hat{\beta}_{\mathrm{g}, 1}\right|$; where $\hat{\eta}_{1}^{\tau_{k}}$ represents the count-depth relationship among predicted values.
- K is chosen so that the absolute value of the maximum normalized slope mode is <0.1 within each of ten groups.

Bulk RNA-seq

SCnorm

Single-cell RNA-seq

SCnorm

H1-1 (~ 1 million reads per cell)

CK SAGES 2017

H1-4 (~4 million reads per cell)

CK SAGES 2017

Implications for DE analysis

$\mathrm{FC}=\mathrm{H} 1-1 / \mathrm{H} 1-4$

- H1-1: $\sim 100 \mathrm{H} 1$ cells profiles at ~ 1 million reads per cell
- H1-4: Same H1 cells profiled at ~ 4 million reads per cell
- Prior to normalization, H1-1/H1-4 should be about $1 / 4$
- Post normalization, H1-1/H1-4 should be about 1
- If over-normalization is going on, $\mathrm{H} 1-1 / \mathrm{H} 1-4$ will be greater than 1 .

$\mathrm{FC}=\mathrm{H} 1-1 / \mathrm{H} 1-4$

- H1-1: $\sim 100 \mathrm{H} 1$ cells profiles at ~ 1 million reads per cell
- H1-4: Same H1 cells profiled at ~ 4 million reads per cell

Normalization via SCnorm

CK SAGES 2017

Challenges in scRNA-seq

- Normalization
- Technical vs. biological zeros
- De-noising
- Clustering; Identifying sub-populations
- Identifying oscillatory genes
- Identifying and characterizing differences in gene-specific expression distributions (aka. identifying differential distributions)
- Pseudotime reordering
- Network reconstruction
scDD: A Dirichlet mixture model based approach for identifying differential distributions in scRNA-seq experiments

Korthauer et al., Genome Biology, to appear, 2016

Gene-specific multi-modality

(A) Expression States of Gene \mathbf{X} for Individual Cells Over Time

Many genes show multi-modal expression distributions

Opportunity to identify differences beyond traditional DE

Differential expression (DE) Differential proportions (DP)

Differential modes (DM)

Both DM and DE

scRNA-seq DE Analysis

- Recent methods use mixture modeling to account for 'on' and 'off' components
- Shalek et al. (2014)
— SCDE (Kharchenko et al., 2014)
- MAST (Finak et al., 2015)
- When detected, each gene has a latent level of expression within a biological condition, and measurements fluctuate around that level due to biological and technical sources of variability

scDD: Goal

- Model expression profiles while accommodating the often multimodal distributions in the detected cells
- Find genes with Differential Distributions (DD) of expression across two conditions:
— differential means
- differential proportion within modes
- differential modality (number of modes)
- combination thereof
- differential zeroes (detection rate)

scDD: Overview

- Assume that log non-zero normalized, de-noised, expression measurements $Y_{g}=\left(y_{g 1}, \ldots, y_{g J}\right)$ for gene g in J cells arise from a conjugate Dirichlet Process Mixture (DPM) of normals model:

$$
\begin{aligned}
y_{j} & \sim N\left(\mu_{j}, \tau_{j}\right) \\
\mu_{j}, \tau_{j} & \sim G \\
G & \sim D P\left(\alpha, G_{0}\right) \\
G_{0} & =N G\left(m_{0}, s_{0}, a_{0} / 2,2 / b_{0}\right)
\end{aligned}
$$

- Let K denote the number of components (unique values in $\left\{\mu_{\mathrm{j},} \tau_{\mathrm{j}}\right\}, j=1, . ., J$). Of primary interest is the posterior of (μ, τ), which is intractable for moderate sample sizes.
- Let $Z=\left(z_{l}, \ldots, z_{J}\right)$ denote component memberships. Then $f(Y \mid Z)$ is a PPM.

$$
\begin{aligned}
f(Y \mid Z) & =\prod_{k=1}^{K} f\left(y^{(k)}\right) \\
& \propto \prod_{k=1}^{K} \frac{\Gamma\left(a_{k} / 2\right)}{\left(b_{k} / 2\right)^{a_{k} / 2}} s_{k}^{-1 / 2}
\end{aligned}
$$

scDD: Overview (continued)

- To quantify the evidence of DD for gene g, obtain MAP partition estimate, \widehat{Z}, and evaluate $f(Y, \widehat{Z})$ under competing hypotheses:
- ignoring condition ($\mathcal{M}_{E D}$: equivalent distributions)
- separately within condition ($\mathcal{M}_{D D}$: differential distributions)
- Evaluate $\mathcal{M}_{D D}$ using a pseudo-Bayes Factor score:

$$
\text { Score }_{g}=\log \left(\frac{f\left(Y_{g}, \widehat{Z}_{g} \mid M_{D D}\right)}{f\left(Y_{g}, \widehat{Z}_{g} \mid M_{E D}\right)}\right)
$$

- Assess significance via permutation.

scDD: Evaluation via simulation studies

- 8000 ED genes:
- 4000 from single Negative Binomial component
- 4000 from two component mixture of Negative Binomial

■ 2000 DD genes:

- 500 DE genes
- 500 DP genes ($0.33 / 0.66$ proportion difference)
- 500 DM genes (0.50 belong to second mode)
- 500 DB genes (mean in second condition is average of means in the first)
- Sample sizes varied $\in\{50,75,100\}$
- Component distances Δ_{μ} for multimodal conditions varied $\in\{2,3,4,5,6\}$ SDs
■ Means, variances, and detection rates sampled empirically

Evaluate: Power to identify DD genes
Rate at which DD genes are correctly classified Rate at which correct \# components are identified

scDD: Power to detect DD genes within each category

Sample Size	True Gene Category					
	Method	DE	DP	DM	DB	Overall (FDR)
	scDD	0.893	$\mathbf{0 . 4 1 8}$	$\mathbf{0 . 8 9 8}$	$\mathbf{0 . 5 7 2}$	$\mathbf{0 . 6 9 5}(0.030)$
	SCDE	0.872	0.026	0.816	0.260	$0.494(0.004)$
	MAST	$\mathbf{0 . 9 0 8}$	0.400	0.871	0.019	$0.550(0.026)$
100	scDD	0.951	0.590	$\mathbf{0 . 9 6 0}$	$\mathbf{0 . 6 6 8}$	$\mathbf{0 . 7 9 2 (0 . 0 3 1)}$
	SCDE	0.948	0.070	0.903	0.387	$0.577(0.003)$
	MAST	$\mathbf{0 . 9 5 6}$	$\mathbf{0 . 6 3 2}$	0.942	0.036	$0.642(0.022)$
	scDD	0.972	0.717	$\mathbf{0 . 9 8 2}$	$\mathbf{0 . 7 2 7}$	$\mathbf{0 . 8 5 0}(0.033)$
	SCDE	0.975	0.125	0.946	0.478	$0.631(0.003)$
	MAST	$\mathbf{0 . 9 7 7}$	$\mathbf{0 . 7 5 2}$	0.970	0.045	$0.686(0.022)$
	sCDD	$\mathbf{1 . 0 0 0}$	0.985	$\mathbf{1 . 0 0}$	$\mathbf{0 . 9 0 3}$	$\mathbf{0 . 9 7 2 (0 . 0 3 4)}$
	SCDE	$\mathbf{1 . 0 0 0}$	0.858	0.998	0.785	$0.910(0.004)$
	MAST	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 9 2}$	$\mathbf{1 . 0 0}$	0.174	$0.792(0.021)$

Comparison of hESCs

Number of DD genes identified in each cell type comparison

	scDD							
Comparison	DE	DP	DM	DB	DZ	Total	SCDE	MAST
H1 vs NPC	1342	429	739	406	1590	4506	2938	5729
H1 vs DEC	1408	404	939	345	880	3976	1581	3523
NPC vs DEC	1245	449	700	298	2052	4744	1881	5383
H1 vs H9	194	84	55	32	145	510	102	1091
scDD only:	2%	21%	38%	24%	15%			

Genes identified in H1 vs. NPC comparison

